The DOE ACTS Collection Fast and Robust Libraries for High Performance Computing Tony Drummond Lawrence Berkeley National Laboratory LADrummond@lbl.gov ## The Advanced CompuTational Software Collection Project **Goal:** The Advanced CompuTational Software Collection (ACTS) project makes reliable and efficient software tools more widely used, and more effective in solving the nation's engineering and scientific problems. #### References: - L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005 - http://acts.nersc.gov ### The Advanced CompuTational Software Collection Project Principal Investigators: L. A. Drummond and O. A. Marques Lawrence Berkeley National Laboratory #### References: - L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005 - http://acts.nersc.gov ## The Advanced CompuTational Software Collection Project ## acts-support@nersc.gov #### **References:** - L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005 - http://acts.nersc.gov ## The Core Activity Areas of the ACTS Collection Project #### Long-Term Maintenance Tools for Run-time Support: Scalable Debugging Tools **Performance Monitoring Tools** Software Development Tools **Numerical Software** Numerical Software Library Optimization Software Distribution Software Dependency Graph: Platform, Basic and Interoperability Outreach and Enabling ### Dissemination **ACTS Information Center:** Guide to Available Services **Technical Reports** Newsgroups On-line Tutorials **Uniform Tool Documentation** Well Documented Examples for All Tools Workshops **Short Courses and Coding Camps** #### Independent Testing and Evaluation **Testing Platforms** Verification Engines **Computer Vendor Collaborations** Computational Sciences and **Engineering Networking:** **Developers Exchange** User Feedback Problem/Bug Tracking International Collaborations #### High-Level **User Support** High-Level User Interfaces To Tool Users: Petascale Help with Tool Selection Help with Tool Utilization Help with Tool Installation **Develop High-Level User Interfaces** To Tool Developers: Tool Long-term Maintenance Practices Tool Distribution Utilities, Licensing **Tool Integration Mechanisms** Sustainable Software Support ### The U.S. DOE ACTS Collection Project Execution time of PDPOSV for various grid shapes ### Tools In The ACTS Collection Advanced CompuTational Software Collection (ACTS) Funded by DOE/ASCR LIBRARY DEVELOPMENT **NUMERICAL TOOLS** **CODE DEVELOPMENT** **RUN TIME SUPPORT** http://acts.nersc.gov | Category | Tool | Functionalities | |--------------------------------------|---------------|---| | | Trilinos | Algorithms for the iterative solution of large sparse linear systems. | | Numerical | Hypre | Algorithms for the iterative solution of large sparse linear systems, intuitive grid-centric interfaces, and dynamic configuration of parameters. | | | PETSc | Tools for the solution of PDEs that require solving large-scale, sparse linear and nonlinear systems of equations. | | Ax = b | OPT++ | Object-oriented nonlinear optimization package. | | $Az = \lambda z$ $A = U\Sigma V^{T}$ | SUNDIALS | Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-algebraic equations. | | PDEs
ODEs | ScaLAPACK | Library of high performance dense linear algebra routines for distributed-memory message-passing. | | M | SLEPc | Software library for the solution of large sparse eigenproblems on parallel computers. | | | SuperLU | General-purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. | | | TAO | Large-scale optimization software, including nonlinear least squares, unconstrained minimization, bound constrained optimization, and general nonlinear optimization. | | Code
Development | Global Arrays | Library for writing parallel programs that use large arrays distributed across processing nodes and that offers a shared-memory view of distributed arrays. | | Development | Overture | Object-Oriented tools for solving computational fluid dynamics and combustion problems in complex geometries. | | Run Time
Support | TAU | Set of tools for analyzing the performance of C, C++, Fortran and Java programs. | | Library
Development | ATLAS | Tools for the automatic generation of optimized numerical software for modern computer architectures and compilers. | U.S. DEPARTMENT OF ENERGY | Computational
Problem | Methodology | Algorithms | Library | |--------------------------------|----------------|---|--| | Systems of Linear
Equations | | LU Factorization | ScaLAPACK (dense) SuperLU (sparse) | | | Dírect Methods | Cholesky
Factorization | ScaLAPACK | | | | LDL ^T (Tridiagonal matrices) | ScaLAPACK | | | | QR Factorization | ScaLAPACK | | | | QR with column pivoting | ScaLAPACK | | | | LQ factorization | ScaLAPACK Office of Science S | | Computational
Problem | Methodology | Algorithms | Library | |--------------------------|-------------------|---------------------------------|-------------------------| | Systems of Linear | | Conjugate Gradient | AztecOO (Trílínos) | | Equations | | | PETSc | | (cont) | | GMRES | AztecOO | | | | | PETSc | | | | | Нурге | | | | CG Squared | AztecOO | | | Iterative Methods | | PETSc | | | | Bí-CG Stab | AztecOO | | | | | PETSc | | | | Quasi-Minimal
Residual (QMR) | AztecOO | | | | Transpose Free | AztecOO | | | | QMR | PETSC Office of Science | U.S. DEPARTMENT OF ENERGY | Computational
Problem | Methodology | Algorithms | Library | |--------------------------------|-----------------------------|--------------------------------|---------------------------| | Systems of Linear
Equations | | SYMMLQ | PETSc | | (cont) | Iterative Methods
(cont) | Precondition CG | AztecOO
PETSc
Hypre | | | | Ríchardson | PETSc | | | | Block Jacobí
Preconditioner | AztecOO
PETSc
Hypre | | | | Point Jocobi
Preconditioner | AztecOO | | | | Least Squares
Polynomíals | PETSc Office of Science | U.S. DEPARTMENT OF ENERGY | Computational Problem | Methodology | Algorithms | Library | |-----------------------|---------------------------|---------------------------|-------------------------| | Systems of Linear | | SOR Preconditioning | PETSc | | Equations | | Overlapping Additive | PETSc | | (cont) | | Schwartz | | | | | Approximate Inverse | Нурге | | | Iterative Methods | Sparse LU | AztecOO
PETSc | | | (cont) | preconditioner | Hypre | | | | Incomplete LU (ILU) | AztecOO | | | MultíGríd (MG)
Methods | preconditioner | | | | | Least Squares | PETSc | | | | Polynomials | | | | | MG Preconditioner | PETSc | | | | , view in a second second | Hypre | | | | Algebraic MG | Нурге | | | | Semi-coarsening | Hypre Office of Science | | Computational
Problem | Methodology | Algorithm | Library | |----------------------------------|-------------------------------|---|---| | Línear Least Squares
Problems | Least Squares | mín _x b - Ax ₂ | ScaLAPACK | | | Mínímum Norm
Solution | mín _x x ₂ | ScaLAPACK | | | Mínímum Norm Least
Squares | $min_x \mid \mid b - Ax \mid \mid_2$
$min_x \mid \mid x \mid \mid_2$ | ScaLAPACK | | Standard Eigenvalue | Symmetric Eigenvalue | $Az = \lambda z$ | ScaLAPACK (dense) | | Problem | Problem | For A=A ^H or A=A ^T | SLEPc (sparse) | | Singular Value Problem | Singular Value | $A = U\Sigma V^T$ | ScaLAPACK (dense) | | | Decomposition | $A = U\Sigma V^{H}$ | SLEPc (sparse) | | Generalized Symmetric | Eigenproblem | $Az = \lambda Bz$ | ScaLAPACK (dense) | | Definite Eigenproblem | | $ABz = \lambda z$ | SLEPc (sparse) | | | | $BAz = \lambda z$ | Office of Science U.S. DEPARTMENT OF ENERGY | | Computational
Problem | Methodology | Algorithm | Library | |--------------------------|--------------|----------------------------------|---------| | Non-Linear Equations | | Líne Search | PETSc | | | | Trust Regions | PETSc | | | Newton Based | Pseudo-Transient
Continuation | PETSc | | | | Matríx Free | PETSc | | Computational
Problem | Methodology | Algorithm | Library | |--------------------------|---------------|----------------------------|---| | Non-Linear | | Newton | OPT++ | | Optimization | | | TAO | | | | Finite-Difference | OPT++ | | | | Newton | TAO | | | Newton Based | Quasí-Newton | OPT++ | | | | | TAO | | | | Non-linear Interior | OPT++ | | | | Point | TAO | | | | Standard Non-linear | OPT++ | | | | CG | TAO | | | CG | Limited Memory
BFGS | OPT++ | | | | Gradient Projections | TAO | | | Dírect Search | No derivate
information | OPT++ Office of Science U.S. DEPARTMENT OF ENERGY | | Computational
Problem | Methodology | Algorithm | Library | |--------------------------|-----------------------|------------------------------|---| | Non-Línear | | Feasible Semismooth | TAO | | Optimization (cont) | Semismoothing | Unfeasible semismooth | TAO | | Ordinary Differential | | Adam-Moulton | CVODE (SUNDIALS) | | Equations | Integration | (Variable coefficient forms) | CVODES | | | Backward Differential | Direct and Iterative | CVODE | | | Formula | Solvers | CVODES | | Nonlinear Algebraic | Inexact Newton | Line Search | KINSOL (SUNDIALS) | | Equations | inexact newton | | | | Differential Algebraic | Backward Differential | Direct and Iterative | IDA (SUNDIALS) | | Equations | Formula | Solvers | Office of Science U.S. DEPARTMENT OF ENERGY | | Computational
Problem | Support | Techniques | Library | |---------------------------|--------------------|--|---| | Writing Parallel Programs | Dístríbuted Arrays | Shared-Memory Distributed Memory Grid Generation Structured Meshes Semi-Structured Meshes | Global Arrays CUMULVS (viz) Globus (Grid) OVERTURE CHOMBO (AMR) Hypre OVERTURE PETSc CHOMBO (AMR) Hypre OVERTURE OVERTURE OVERTURE | | Computational
Problem | Support | Technique | Library | |--------------------------|----------------------------|------------------------------|---------------| | Profiling | Algorithmic
Performance | Automatic instrumentation | PETSc | | | 1 CHOITIMANCE | User Instrumentation | PETSc | | | Execution Performance | Automatíc
Instrumentatíon | TAU | | | remance | User Instrumentation | TAU | | Code Optimization | Library Installation | Línear Algebra
Tuning | ATLAS | | Interoperability | Code Generation | Language | BABEL | | | Code deneration | Components | CCA Office of | ### How Does One Use ACTS Tools? ``` CALL BLACS_GET(-1, 0, ICTXT) CALL BLACS_GRIDINIT(ICTXT, 'Row-major', NPROW, NPCOL) CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL) CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL) CALL PDGESV(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, $ INFO) ``` ### Language Calls #### **Command lines** - -ksp_type [cg,gmres,bcgs,tfqmr,...] - -pc_type [lu,ilu,jacobi,sor,asm,...] *More advanced:* - -ksp_max_it <max_iters> - -ksp_gmres_restart <restart> - -pc_asm_overlap <overlap>-pc_asm_type <..> #### **Problem Domain** ## Tool to Tool Interoperability ## High-level User Interfaces to the ACTS Collection ### A Closer Look Into the ACTS Collection $Az = \lambda z$ $A = U\Sigma V^{T}$ PETSc SLEPc **ScaLAPACK** Dr. J. Roman TAU Dr. O. Marques ### A Quick Introduction to ScaLAPACK #### ScaLAPACK Users' Guide L. S. Blackford • J. Choi • A. Cleary • E. D'Azevedo J. Demmel • I. Dhillon • J. Dongarra • S. Hammarling G. Henry • A. Petitet • K. Stanley • D. Walker • R. C. Whaley ### Team of Developers: - Susan Blackford - · Jaeyoung Choi, Soongsil University - Andy Cleary, LLNL - Ed D'Azevedo, ORNL - Jim Demmel, UCB - Inderjit Dhillon, UT Austin - Jack Dongarra, UTK - Ray Fellers, LLNL - Sven Hammarling, NAG - Greg Henry, Intel - Sherry Li, LBNL - Osní Marques, LBNL - Caroline Papadopoulos, UCSD - Antoine Petitet, UTK - Ken Stanley, UCB - Francoise Tisseur, Manchester - David Walker, Cardiff - Clint Whaley, UTK - Julien Langou, UTK ### A Quick Introduction to ScaLAPACK #### **OUTLINE:** - ScaLAPACK: software structure - -Basic Linear Algebra Subprograms (BLAS) - -Linear Algebra PACKage (LAPACK) - -Basic Linear Algebra Communication Subprograms (BLACS) - -Parallel BLAS (PBLAS) - ScaLAPACK: details - -Data layout - -Array descriptors - -Error handling - -Performance - Examples ### ScaLAPACK's Software Structure ## BLAS: <u>Basic Linear Algebra Subroutines</u> #### **BLAS LEVELS:** • Level 1 BLAS: vector-vector • Level 2 BLAS: matrix-vector • Level 3 BLAS: matrix-matrix ### Design Considerations: - Portability - Performance: development of blocked algorithms is important for performance! ## LAPACK: A Dense Linear Algebra Package - Linear Algebra library written in Fortran 77 (Fortran 90) - Combine algorithms from LINPACK and EISPACK into a single package. - Efficient on a wide range of computers (RISC, Vector, SMPs). - Built atop level 1, 2, and 3 BLAS Basic problems: - Linear systems: Ax = b - Least squares: $\min ||Ax b||_{2}$ - Singular value decomposition: $A = U\Sigma V^T$ - Eigenvalues and eigenvectors: $Az = \lambda z$, $Az = \lambda Bz$ - · LAPACK does not provide routines for structured problems or general sparse matrices (i.e. sparse storage formats such as compressed-row, -column, -diagonal, skyline ...). ### BLACS: Basic Linear Algebra Communication Subroutines - Response to Message Passing based distributed communications - Associate widely recognized mnemonic names with communication operations. This improves: - program readability - self-documenting quality of the code. - Promote efficiency by identifying frequently occurring operations of linear algebra which can be optimized on various computers. ## Basic Concepts of The BLACS Interface - Promote efficiency by identifying common operations of linear algebra that can be optimized on various computers. - Processes are embedded in a two-dimensional grid. An operation which involves more than one sender and one receiver is called a scoped operation. Scope Meaning | Scope | Meaning | |--------|--| | Row | All processes in a process row participate. | | Column | All processes in a process column participate. | | All | All processes in the process grid participate. | ### **BLACS** Communication Routines ### Send/Receive: ``` xxSD2D(ICTXT, [UPLO,DIAG],M,N,A,LDA,RDEST,CDEST) ``` xxRV2D(ICTXT, [UPLO,DIAG],M,N,A,LDA,RSRC,CSRC) | _ (Data type) | xx (Matrix type) | |----------------------|--------------------------------| | I: Integer, | GE: General rectangular matrix | | | TR: Trapezoidal matrix | | D: Double Precision, | | | C: Complex, | | | Z: Double Complex. | | #### Broadcast: **BS2D(ICTXT, SCOPE, TOP, [UPLO, DIAG], M, N, A, LDA) **BR2D (ICTXT, SCOPE, TOP, [UPLO, DIAG], M, N, A, LDA, RSRC, CSRC) | SCOPE | TOP | |----------------------------|--| | 'Row'
'Column'
'All' | ' (default)'Increasing Ring''1-tree' | ### **BLACS** Context - BLACS context MPI communicator - The BLACS context is the BLACS mechanism for partitioning communication space. - A message in a context cannot be sent or received in another context. - · The context allows the user to - create arbitrary groups of processes - create multiple overlapping and/or disjoint grids - isolate each process grid so that grids do not interfere with each other ## An Example Code Using BLACS ``` (out) uniquely identifies each process (out) number of processes available Get system information CALL BLACS_PINFO (IAM, NPROCS) integer handle indicating the context (in) use (default) system context * Get default system context (out) BLACS context CALL BLACS GET (0, 0, ICTXT) (output) process row and * Define 1 x (NPROCS/2+1) process grid column coordinate NPROW = 1 NPCOL = NPROCS / 2 + 1 CALL BLACS GRIDINIT (ICTXT, 'Row', NPROW, NPCO CALL BLACS GRIDINFO (ICTXT, NPROW, NPCOL, MYROW, MYCOL) * If I'm not in the grid, go to end of program IF (MYROW.NE.-1) THEN send X to process (1,0) IF (MYROW.EQ.O .AND. MYCOL.EQ.O) THEN CALL DGESD2D (ICTXT, 5, 1, X, 5, 1, 0) ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN CALL DGERV2D (ICTXT, 5, 1, Y, 5, 0, 0) END IF receive X from process (0,0) CALL BLACS GRIDEXIT (ICTXT) ← leave context END IF CALL BLACS EXIT (0) ← exit from the BLACS END ``` ### PBLAS: Parallel BLAS - Similar to the BLAS in portability, functionality and naming. - Built atop the BLAS and BLACS - Províde global víew of matríx Array descriptor (to be reviewed later) ## ScaLAPACK Design Goals - Efficiency - -Optimized computation and communication engines - -Block-partitioned algorithms (Level 3 BLAS) for good node performance - Reliability - -Whenever possible, use LAPACK algorithms and error bounds. - Scalability - -As the problem size and number of processors grow - -Replace LAPACK algorithm that did not scale (new ones into LAPACK) - Portability - -Isolate machine dependencies to BLAS and the BLACS - Flexibility - -Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS) - Ease-of-Use - -Calling interface similar to LAPACK ### ScaLAPACK: Data Layouts - 1D block and column distributions - 1D block-cycle column and 2D block-cyclic distribution - 2D block-cyclic distribution used in ScaLAPACK for dense matrices | 0 1 2 3 0 1 | 2 3 | |-------------|-----| |-------------|-----| | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | |---|---|---|---|---|---|---|---| | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | | 2 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | ## How does 2D Block Cyclic Distribution Work 5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view ## An Example of 2D Block Cyclic Distribution ``` 1.5 LDA is the leading dimension of the local -2.1 2.5 array CALL BLACS GRIDINFO (ICTXT, NPROW, NPCOL, MYROW, MYCOL) -3.1 -3.2 3.3 3.4 3.5 -4.1 - 4.2 - 4.3 4.4 ΙF (MYROW.EQ.O .AND. MYCOL.EQ.O) THEN \begin{bmatrix} -5.1 & -5.2 & -5.3 & -5.4 \end{bmatrix} A(1) = 1.1; A(2) = -2.1; A(3) = -5.1; A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2; A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5; ELSE IF (MYROW.EO.O .AND. MYCOL.EO.1) THEN A(1) = 1.3; A(2) = 2.3; A(3) = -5.3; A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4; ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN A(1) = -3.1; A(2) = -4.1; A(1+LDA) = -3.2; A(2+LDA) = -4.2; A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5; a₁₃ a₁₄ ELSE IF (MYROW.EO.1 .AND. MYCOL.EO.1) THEN A(1) = 3.3; A(2) = -4.3; A(1+LDA) = 3.4; A(2+LDA) = 4.4; a₂₃ END IF a55 a₅₃ a₅₄ CALL PDGESVD (JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU, a35 a33 JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK, INFO) a₄₁ a₄₅ a₄₃ ``` ## Why the headache of 2D block Cyclic Distribution? - Ensures good load balance → performance and scalability (analysis of many algorithms to justify this layout). - Encompasses a large number of data distribution schemes (but not all). - Needs redistribution routines to go from one distribution to the other. - See http://acts.nersc.gov/scalapack/hands-on/datadist.html #### AID: http://acts.nersc.gov/scalapack/hands-on/datadist.html #### ScaLAPACK: Array Descriptors - Each global data object is assigned an array descriptor. - The array descriptor: - Contains information required to establish mapping between a global array entry and its corresponding process and memory location (uses concept of BLACS context). - Is differentiated by the DTYPE_ (first entry) in the descriptor. - Provides a flexible framework to easily specify additional data distributions or matrix types. - User must distribute all global arrays prior to the invocation of a ScaLAPACK routine, for example: - Each process generates its own submatrix. - One processor reads the matrix from a file and send pieces to other processors (may require message-passing for this). ## Array Descriptor for Dense Matrices | | DESC_() | Symbolic Name | Scope | Definition | |---|---------|---------------|----------|--| | | 1 | DTYPE_A | (global) | Descriptor type DTYPE_A=1 for dense matrices. | | | 2 | CTXT_A | (global) | BLACS context handle. | | | 3 | M_A | (global) | Number of rows in global array A. | | | 4 | N_A | (global) | Number of columns in global array A. | | | 5 | MB_A | (global) | Blocking factor used to distribute the rows of array A. | | | 6 | NB_A | (global) | Blocking factor used to distribute the columns of array A. | | | 7 | RSRC_A | (global) | Process row over which the first row of the array A is | | # | | | | distributed. | | I | 8 | CSRC_A | (global) | Process column over which the first column of the array A | | 1 | | | | is distributed. | | | 9 | LLD_A | (local) | Leading dimension of the local array. | ## Array Descriptor for Narrow Band Matrices | DESC_() | Symbolic Name | Scope | Definition | |---------|---------------|----------|---| | 1 | DTYPE_A | (global) | Descriptor type DTYPE_A=501 for 1 x Pc process grid for band and tridiagonal matrices block-column distributed. | | 2 | CTXT A | (global) | BLACS context handle. | | 3 | N_A | (global) | Number of columns in global array A. | | 4 | NB_A | (global) | Blocking factor used to distribute the columns of array A. | | 5 | CSRC_A | (global) | Process column over which the first column of the array A | | | | | is distributed. | | 6 | LLD_A | (local) | Leading dimension of the local array. For the tridiagonal | | | | | subroutines, this entry is ignored. | | 7 | - | - | Unused, reserved. | #### Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers | | DESC_() | Symbolic Name | Scope | Definition | |---|---------|---------------|----------|--| | | 1 | DTYPE_B | (global) | Descriptor type DTYPE_B=502 for Pr x 1 process grid for block-row distributed matrices | | Ħ | 2 | CTXT_B | (global) | BLACS context handle | | Ħ | 3 | M_B | (global) | Number of rows in global array B | | H | 4 | MB_B | (global) | Blocking factor used to distribute the rows of array B | | | 5 | RSRC_B | (global) | Process row over which the first row of the array B is distributed | | | 6 | LLD_B | (local) | Leading dimension of the local array. For the tridiagonal subroutines, this entry is ignored | | | 7 | - | - | Unused, reserved | ## ScaLAPACK Functionality | A b | Driver type | | Factor | Solve | Inversion | Conditioning | Iterative | |---------------------------------------|-------------|--------|--------|-------|--------------|--------------|------------| | Ax = b | Simple | Expert | acioi | JOINE | IIIVCI SIOIT | estímator | Refinement | | Triangular | × | | | × | × | × | X | | SPD | × | × | × | × | × | × | × | | SPD Banded | × | | × | × | | | | | SPD Tridiagonal | × | | × | × | | | | | General | × | × | × | X | × | × | × | | General Banded | × | | × | × | | | | | General Tridiagonal | × | | x | × | | | | | Least Squares | × | | × | × | | | | | GQR | | | × | | | | | | GRQ | | | X | | | | | | $Ax = \lambda x$ or $Ax = \lambda Bx$ | Símple | Expert | Reduce | Solve | | | | | Symmetric | × | X | X | × | | | | | General | × | × | × | × | | | | | Generalized BSPD | × | | × | × | | | | | SVD | | | × | × | | | ₹ Office o | ### ScaLAPACK: Error Handling - Driver and computational routines perform global and local input error-checking. - Global checking → synchronization - Local checking → validity - No input error-checking is performed on the auxiliary routines. - If an error is detected in a PBLAS or BLACS routine program execution stops. #### ScaLAPACK: Debugging Hints - Look at ScaLAPACK example programs. - · Always check the value of INFO on exit from a ScaLAPACK routine. - Query for size of workspace, LWORK = −1. - · Link to the Debug Level 1 BLACS (specified by BLACSDBGLVL=1 in Bmake.inc). - Consult errata files on netlib: http://www.netlib.org/scalapack/errata.scalapack http://www.netlib.org/blacs/errata.blacs #### ScaLAPACK Performance - The algorithms implemented in ScaLAPACK are scalable in the sense that the parallel efficiency is an increasing function of N^2/P (problem size per node). - Maintaining memory use per node constant allows efficiency to be maintained (in practice, a slight degradation is acceptable). - Use efficient machine-specific BLAS (not the Fortran 77 source code available in http://www.netlib.gov) and BLACS (nondebug installation). - On a distributed-memory computer: - Use the right number of processors - Rule of thumb: P=MxN/10⁶ for an MxN matrix, which provides a local matrix of size approximately 1000-by-1000. - Do not try to solve a small problem on too many processors. - Do not exceed the physical memory. - Use an efficient data distribution. - Block size (i.e., MB,NB) = 64. - Square processor grid: Prow = Pcolumn. # ScaLAPACK Performance: Varying Proc Grid Size #### **Execution time of PDGESV for various grid shape** Times obtained on: 60 processors, Dual AMD Opteron 1.4GHz Cluster with Myrinet Interconnect, 2GB Memory ### ScaLAPACK Performance: Computation vs. Communication Times obtained on: 60 processors, Dual AMD Opteron 1.4GHz Cluster w/Myrinet Interconnect 2GB Memory #### Commercial use of ScaLAPACK ## ScaLAPACK has been incorporated in the following commercial packages: - Fujitsu - Hewlett-Packard - Hitachi - IBM Parallel ESSL - NAG Numerical Library - Cray LIBSCI - NEC Scientific Software Library - Sun Scientific Software Library - Visual Numerics (IMSL) #### SUMMARY #### SUMMARY #### References - ScaLAPACK and PyACTS hands-on this week - PETSc and SLEPc tutorials this week - ACTS Information Center: http://acts.nersc.gov - Two Journal Issues dedicated to ACTS Eighth ACTS Collection Workshop, August 21-24, 2007